{ "id": "1312.7295", "version": "v2", "published": "2013-12-27T16:45:19.000Z", "updated": "2015-05-13T14:52:36.000Z", "title": "An asymptotic formula for Goldbach's conjecture with monic polynomials in $\\mathbb{Z}[θ][x]$", "authors": [ "Abílio Lemos", "Anderson L. A. Araujo" ], "categories": [ "math.NT" ], "abstract": "In this paper, we consider $D=\\mathbb{Z}[\\theta]$, where $$\\theta= \\sqrt{-k} \\,\\,\\,\\, \\mbox{if}\\;\\;\\;-k\\not\\equiv 1 \\;(\\mbox{mod}\\;4)\\,\\,\\,\\,\\mbox{or}\\,\\,\\,\\, \\theta=\\frac{\\sqrt{-k}+1}{2} \\,\\,\\,\\, \\mbox{if}\\;\\;\\;-k\\equiv 1 \\;(\\mbox{mod}\\;4),$$ $k\\geq 2$ is a squarefree integer, and we proved that the number $R(y)$ of representations of a monic polynomial $f(x)\\in \\mathbb{Z}[\\theta][x]$, of degree $d\\geq 1$, as a sum of two monic irreducible polynomials $g(x)$ and $h(x)$ in $\\mathbb{Z}[\\theta][x]$, with the coefficients of $g(x)$ and $h(x)$ bounded in complex modulus by $y$, is asymptotic to $(4y)^{2d-2}$.", "revisions": [ { "version": "v1", "updated": "2013-12-27T16:45:19.000Z", "title": "An asymptotic formula for Goldbach's conjecture with monic polynomials in Z[theta][x]", "abstract": "We say that $D$ satisfies the property (GC) if \\[ \\begin{array}{l} \\textup{Every element of} \\ D[x] \\ \\textup{of degree} \\ d\\geq 1 \\textup{can be written as the sum of two irreducibles in }\\,D[x]. \\end{array} \\] In 1965 Hayes \\cite{Hayes} showed that $\\mathbb{Z}$ satisfies the property (GC). In 2011 Pollack showed that $D$ satisfies the property (GC), where $D$ is any integral domain. In this note, we considere $D=\\mathbb{Z}[\\theta]$, where $$\\theta=\\left\\{\\begin{array}{ccc} \\sqrt{-k} & \\mbox{if}\\;\\;\\;-k\\not\\equiv 1 \\;(\\mbox{mod}\\;4) \\frac{\\sqrt{-k}+1}{2} & \\mbox{if}\\;\\;\\;-k\\equiv 1 \\;(\\mbox{mod}\\;4) \\end{array}\\right.,$$ $k$ is a squarefree integer and $k\\geq 2$, and we proved that the number $R(y)$ of representation of a monic polynomial $f(x)\\in \\mathbb{Z}[\\theta][x]$ as a sum of two irreducible monic polynomials $g(x)$ and $h(x)$ in $\\mathbb{Z}[\\theta][x]$, with the coefficients of $g(x)$ and $h(x)$ bounded in complex modulus by $y$, is asymptotic to $(4y)^{2d-2}$.", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-05-13T14:52:36.000Z" } ], "analyses": { "keywords": [ "goldbachs conjecture", "asymptotic formula", "squarefree integer", "integral domain", "irreducible monic polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.7295L" } } }