arXiv Analytics

Sign in

arXiv:1312.1537 [hep-ph]AbstractReferencesReviewsResources

Reanalysis of the $Z_c(4020)$, $Z_c(4025)$, $Z(4050)$ and $Z(4250)$ as tetraquark states with QCD sum rules

Zhi-Gang Wang

Published 2013-12-05, updated 2014-12-30Version 4

In this article, we calculate the contributions of the vacuum condensates up to dimension-10 in the operator product expansion, and study the $C\gamma_\mu-C\gamma_\nu$ type scalar, axial-vector and tensor tetraquark states in details with the QCD sum rules. In calculations, we use the formula $\mu=\sqrt{M^2_{X/Y/Z}-(2{\mathbb{M}}_c)^2}$ to determine the energy scales of the QCD spectral densities. The predictions $M_{J=2} =\left(4.02^{+0.09}_{-0.09}\right)\,\rm{GeV}$, $M_{J=1} =\left(4.02^{+0.07}_{-0.08}\right)\,\rm{GeV}$ favor assigning the $Z_c(4020)$ and $Z_c(4025)$ as the $J^{PC}=1^{+-}$ or $2^{++}$ diquark-antidiquark type tetraquark states, while the prediction $M_{J=0}=\left(3.85^{+0.15}_{-0.09}\right)\,\rm{GeV}$ disfavors assigning the $Z(4050)$ and $Z(4250)$ as the $J^{PC}=0^{++}$ diquark-antidiquark type tetraquark states. Furthermore, we discuss the strong decays of the $0^{++}$, $1^{+-}$, $2^{++}$ diquark-antidiquark type tetraquark states in details.

Comments: 24 pages, 17 figures. arXiv admin note: substantial text overlap with arXiv:1311.1046, arXiv:1312.2652, arXiv:1403.0810, arXiv:1312.7489
Categories: hep-ph, hep-ex
Subjects: 12.39.Mk, 12.38.Lg
Related articles: Most relevant | Search more
arXiv:1310.2422 [hep-ph] (Published 2013-10-09, updated 2014-02-04)
Analysis of the X(3872), Z_c(3900) and Z_c(3885) as axial-vector tetraquark states with QCD sum rules
arXiv:1311.1046 [hep-ph] (Published 2013-11-05, updated 2014-04-11)
Analysis of the $Z_c(4020)$, $Z_c(4025)$, $Y(4360)$ and $Y(4660)$ as vector tetraquark states with QCD sum rules
arXiv:hep-ph/0609013 (Published 2006-09-04, updated 2007-01-12)
$D_{sJ}(2860)$ and $D_{sJ}(2715)$