{ "id": "1312.1537", "version": "v4", "published": "2013-12-05T13:27:08.000Z", "updated": "2014-12-30T13:30:11.000Z", "title": "Reanalysis of the $Z_c(4020)$, $Z_c(4025)$, $Z(4050)$ and $Z(4250)$ as tetraquark states with QCD sum rules", "authors": [ "Zhi-Gang Wang" ], "comment": "24 pages, 17 figures. arXiv admin note: substantial text overlap with arXiv:1311.1046, arXiv:1312.2652, arXiv:1403.0810, arXiv:1312.7489", "categories": [ "hep-ph", "hep-ex" ], "abstract": "In this article, we calculate the contributions of the vacuum condensates up to dimension-10 in the operator product expansion, and study the $C\\gamma_\\mu-C\\gamma_\\nu$ type scalar, axial-vector and tensor tetraquark states in details with the QCD sum rules. In calculations, we use the formula $\\mu=\\sqrt{M^2_{X/Y/Z}-(2{\\mathbb{M}}_c)^2}$ to determine the energy scales of the QCD spectral densities. The predictions $M_{J=2} =\\left(4.02^{+0.09}_{-0.09}\\right)\\,\\rm{GeV}$, $M_{J=1} =\\left(4.02^{+0.07}_{-0.08}\\right)\\,\\rm{GeV}$ favor assigning the $Z_c(4020)$ and $Z_c(4025)$ as the $J^{PC}=1^{+-}$ or $2^{++}$ diquark-antidiquark type tetraquark states, while the prediction $M_{J=0}=\\left(3.85^{+0.15}_{-0.09}\\right)\\,\\rm{GeV}$ disfavors assigning the $Z(4050)$ and $Z(4250)$ as the $J^{PC}=0^{++}$ diquark-antidiquark type tetraquark states. Furthermore, we discuss the strong decays of the $0^{++}$, $1^{+-}$, $2^{++}$ diquark-antidiquark type tetraquark states in details.", "revisions": [ { "version": "v3", "updated": "2014-03-16T15:25:27.000Z", "abstract": "In this article, we calculate the contributions of the vacuum condensates up to dimension-10 in the operator product expansion, and study the $C\\gamma_\\mu-C\\gamma_\\nu$ type scalar, axial-vector and tensor tetraquark states in details with the QCD sum rules. In calculations, we use the formula $\\mu=\\sqrt{M^2_{X/Y/Z}-(2{\\mathbb{M}}_c)^2}$ to determine the energy scales of the QCD spectral densities, the $\\mu$ can be interpreted as the virtuality (or bound energy not as robust) in the heavy quark limit. The predictions $M_{J=2} =\\left(4.02^{+0.09}_{-0.09}\\right)\\,\\rm{GeV}$, $M_{J=1} =\\left(4.02^{+0.07}_{-0.08}\\right)\\,\\rm{GeV}$ are consistent with the experimental values $M_{Z_c(4025)}=(4026.3\\pm2.6\\pm3.7)\\,\\rm{MeV}$, $M_{Z_c(4020)}=(4022.9\\pm 0.8\\pm 2.7)\\,\\rm{MeV}$ from the BESIII collaboration, which favor assigning the $Z_c(4020)$ and $Z_c(4025)$ as the $J^{PC}=1^{+-}$ or $2^{++}$ diquark-antidiquark type tetraquark states. Furthermore, the predictions disfavor assigning the $Z(4050)$ and $Z(4250)$ as the $J^{PC}=0^{++}$ diquark-antidiquark type tetraquark states. More experimental data on the spin and parity are stilled needed to identify the $Z_c(4020)$ and $Z_c(4025)$, while the $Z(4050)$ and $Z(4250)$ still need confirmation. The prediction $M_{J=0}=\\left(3.85^{+0.15}_{-0.09}\\right)\\,\\rm{GeV}$ can be confronted with the experimental data in the futures.", "comment": "23 pages, 17 figures, add detailed discussions. arXiv admin note: substantial text overlap with arXiv:1311.1046, arXiv:1310.2422", "journal": null, "doi": null }, { "version": "v4", "updated": "2014-12-30T13:30:11.000Z" } ], "analyses": { "subjects": [ "12.39.Mk", "12.38.Lg" ], "keywords": [ "qcd sum rules", "diquark-antidiquark type tetraquark states", "reanalysis", "experimental data", "tensor tetraquark states" ], "publication": { "doi": "10.1088/0253-6102/63/4/466" }, "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1267650, "adsabs": "2013arXiv1312.1537W" } } }