arXiv Analytics

Sign in

arXiv:1309.6389 [math.NT]AbstractReferencesReviewsResources

On a bound of Heath-Brown for Dirichlet $L$-functions on the critical line

Bryce Kerr

Published 2013-09-25Version 1

Let $\chi$ a primitive character$\pmod q$ and consider the Dirichlet $L$-function $$L(s,\chi)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^s}.$$ We give a new proof of an upper bound of Heath-Brown for $|L(s,\chi)|$ on the critical line $s=1/2+it$

Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2211.06264 [math.NT] (Published 2022-11-11)
Zeros of Dirichlet $L$-functions near the critical line
arXiv:0907.1910 [math.NT] (Published 2009-07-10)
On the value-distribution of the Riemann zeta-function on the critical line
arXiv:1407.4358 [math.NT] (Published 2014-07-16, updated 2024-08-16)
A theory for the zeros of Riemann $ζ$ and other $L$-functions (updated)