{ "id": "1309.6389", "version": "v1", "published": "2013-09-25T03:13:27.000Z", "updated": "2013-09-25T03:13:27.000Z", "title": "On a bound of Heath-Brown for Dirichlet $L$-functions on the critical line", "authors": [ "Bryce Kerr" ], "categories": [ "math.NT" ], "abstract": "Let $\\chi$ a primitive character$\\pmod q$ and consider the Dirichlet $L$-function $$L(s,\\chi)=\\sum_{n=1}^{\\infty}\\frac{\\chi(n)}{n^s}.$$ We give a new proof of an upper bound of Heath-Brown for $|L(s,\\chi)|$ on the critical line $s=1/2+it$", "revisions": [ { "version": "v1", "updated": "2013-09-25T03:13:27.000Z" } ], "analyses": { "keywords": [ "critical line", "heath-brown", "upper bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.6389K" } } }