arXiv Analytics

Sign in

arXiv:1301.1311 [math.GT]AbstractReferencesReviewsResources

Kaehlerian three-manifold groups

D. Kotschick

Published 2013-01-07Version 1

We prove that if the fundamental group of an arbitrary three-manifold -- not necessarily closed, nor orientable -- is a Kaehler group, then it is either finite or the fundamental group of a closed orientable surface.

Comments: 4 pages
Journal: Math. Res. Lett. 20 (2013), 521--525
Categories: math.GT, math.AG, math.CV, math.GR
Subjects: 32Q15, 57M05, 57N10, 14F35, 20F05
Related articles: Most relevant | Search more
arXiv:1101.1162 [math.GT] (Published 2011-01-06, updated 2011-10-27)
Three manifold groups, Kaehler groups and complex surfaces
arXiv:1011.4084 [math.GT] (Published 2010-11-17, updated 2011-02-12)
Three-manifolds and Kaehler groups
arXiv:1302.0607 [math.GT] (Published 2013-02-04, updated 2014-12-07)
Homotopical Height