arXiv:1101.1162 [math.GT]AbstractReferencesReviewsResources
Three manifold groups, Kaehler groups and complex surfaces
Indranil Biswas, Mahan Mj, Harish Seshadri
Published 2011-01-06, updated 2011-10-27Version 3
Let $ 1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ be an exact sequence of finitely presented groups where Q is infinite and not virtually cyclic, and is the fundamental group of some closed 3-manifold. If G is Kaehler, we show that Q is either the 3-dimensional Heisenberg group or the fundamental group of the Cartesian product of a closed oriented surface of positive genus and the circle. As a corollary, we obtain a new proof of a theorem of Dimca and Suciu by taking N to be the trivial group, If G is the fundamental group of a compact complex surface, we show that Q must be the fundamental group of a Seifert-fibered space and G the fundamental group of an elliptic fibration. We also give an example showing that the relation of quasi-isometry does not preserve Kaehler groups. This gives a negative answer to a question of Gromov which asks whether Kaehler groups can be characterized by their asymptotic geometry.