arXiv Analytics

Sign in

arXiv:1108.4840 [math.NT]AbstractReferencesReviewsResources

Congruences involving $\binom{4k}{2k}$ and $\binom{3k}k$

Zhi-Hong Sun

Published 2011-08-24Version 1

Let $p$ be a prime greater than 3. In the paper we mainly determine $\sum_{k=0}^{[p/4]}\binom{4k}{2k}(-1)^k$, $\sum_{k=0}^{[p/3]}\binom{3k}k, \sum_{k=0}^{[p/3]}\binom{3k}k(-1)^k$ and $\sum_{k=0}^{[p/3]}\binom{3k}k(-3)^k$ modulo $p$, where $[x]$ is the greatest integer not exceeding $x$.

Comments: 24 pages
Categories: math.NT, math.CO
Subjects: 11A07, 11B39, 11A15, 11E25, 05A19
Related articles: Most relevant | Search more
arXiv:1401.0493 [math.NT] (Published 2014-01-02)
Congruences for $q^{[p/8]}\pmod p$ II
arXiv:1104.2789 [math.NT] (Published 2011-04-14, updated 2011-04-28)
Congruences involving $\binom{2k}k^2\binom{3k}km^{-k}$
arXiv:1104.3047 [math.NT] (Published 2011-04-15, updated 2011-04-18)
Congruences involving $\binom{2k}k^2\binom{4k}{2k}m^{-k}$