arXiv:1108.4840 [math.NT]AbstractReferencesReviewsResources
Congruences involving $\binom{4k}{2k}$ and $\binom{3k}k$
Published 2011-08-24Version 1
Let $p$ be a prime greater than 3. In the paper we mainly determine $\sum_{k=0}^{[p/4]}\binom{4k}{2k}(-1)^k$, $\sum_{k=0}^{[p/3]}\binom{3k}k, \sum_{k=0}^{[p/3]}\binom{3k}k(-1)^k$ and $\sum_{k=0}^{[p/3]}\binom{3k}k(-3)^k$ modulo $p$, where $[x]$ is the greatest integer not exceeding $x$.
Comments: 24 pages
Keywords: congruences, prime greater
Related articles: Most relevant | Search more
arXiv:1401.0493 [math.NT] (Published 2014-01-02)
Congruences for $q^{[p/8]}\pmod p$ II
Congruences involving $\binom{2k}k^2\binom{3k}km^{-k}$
Congruences involving $\binom{2k}k^2\binom{4k}{2k}m^{-k}$