{ "id": "1108.4840", "version": "v1", "published": "2011-08-24T13:47:04.000Z", "updated": "2011-08-24T13:47:04.000Z", "title": "Congruences involving $\\binom{4k}{2k}$ and $\\binom{3k}k$", "authors": [ "Zhi-Hong Sun" ], "comment": "24 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $p$ be a prime greater than 3. In the paper we mainly determine $\\sum_{k=0}^{[p/4]}\\binom{4k}{2k}(-1)^k$, $\\sum_{k=0}^{[p/3]}\\binom{3k}k, \\sum_{k=0}^{[p/3]}\\binom{3k}k(-1)^k$ and $\\sum_{k=0}^{[p/3]}\\binom{3k}k(-3)^k$ modulo $p$, where $[x]$ is the greatest integer not exceeding $x$.", "revisions": [ { "version": "v1", "updated": "2011-08-24T13:47:04.000Z" } ], "analyses": { "subjects": [ "11A07", "11B39", "11A15", "11E25", "05A19" ], "keywords": [ "congruences", "prime greater" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.4840S" } } }