arXiv Analytics

Sign in

arXiv:1010.2489 [math.NT]AbstractReferencesReviewsResources

Proof of three conjectures on congruences

Hao Pan, Zhi-Wei Sun

Published 2010-10-12, updated 2014-08-07Version 5

In this paper we prove three conjectures on congruences involving central binomial coefficients or Lucas sequences. Let $p$ be an odd prime and let $a$ be a positive integer. We show that if $p\equiv 1\pmod{4}$ or $a>1$ then $$ \sum_{k=0}^{\lfloor\frac34p^a\rfloor}\binom{-1/2}k\equiv\left(\frac{2}{p^a}\right)\pmod{p^2}, $$ where $(-)$ denotes the Jacobi symbol. This confirms a conjecture of the second author. We also confirm a conjecture of R. Tauraso by showing that $$\sum_{k=1}^{p-1}\frac{L_k}{k^2}\equiv0\pmod{p}\quad {\rm provided}\ \ p>5,$$ where the Lucas numbers $L_0,L_1,L_2,\ldots$ are defined by $L_0=2,\ L_1=1$ and $L_{n+1}=L_n+L_{n-1}\ (n=1,2,3,\ldots)$. Our third theorem states that if $p\not=5$ then we can determine $F_{p^a-(\frac{p^a}5)}$ mod $p^3$ in the following way: $$\sum_{k=0}^{p^a-1}(-1)^k\binom{2k}k\equiv\left(\frac{p^a}5\right)\left(1-2F_{p^a-(\frac{p^a}5)}\right)\ \pmod{p^3},$$ which appeared as a conjecture in a paper of Sun and Tauraso in 2010.

Comments: 16 pages, final published version
Journal: Sci. China Math. 57(2014), 2091-2102
Categories: math.NT, math.CO
Subjects: 11B65, 11A07, 05A10, 11B39
Related articles: Most relevant | Search more
arXiv:0805.0563 [math.NT] (Published 2008-05-05, updated 2010-04-01)
New congruences for central binomial coefficients
arXiv:0911.2415 [math.NT] (Published 2009-11-12, updated 2011-08-02)
On congruences related to central binomial coefficients
arXiv:0709.1665 [math.NT] (Published 2007-09-11, updated 2011-06-02)
On some new congruences for binomial coefficients