{ "id": "1010.2489", "version": "v5", "published": "2010-10-12T19:57:46.000Z", "updated": "2014-08-07T11:56:44.000Z", "title": "Proof of three conjectures on congruences", "authors": [ "Hao Pan", "Zhi-Wei Sun" ], "comment": "16 pages, final published version", "journal": "Sci. China Math. 57(2014), 2091-2102", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper we prove three conjectures on congruences involving central binomial coefficients or Lucas sequences. Let $p$ be an odd prime and let $a$ be a positive integer. We show that if $p\\equiv 1\\pmod{4}$ or $a>1$ then $$ \\sum_{k=0}^{\\lfloor\\frac34p^a\\rfloor}\\binom{-1/2}k\\equiv\\left(\\frac{2}{p^a}\\right)\\pmod{p^2}, $$ where $(-)$ denotes the Jacobi symbol. This confirms a conjecture of the second author. We also confirm a conjecture of R. Tauraso by showing that $$\\sum_{k=1}^{p-1}\\frac{L_k}{k^2}\\equiv0\\pmod{p}\\quad {\\rm provided}\\ \\ p>5,$$ where the Lucas numbers $L_0,L_1,L_2,\\ldots$ are defined by $L_0=2,\\ L_1=1$ and $L_{n+1}=L_n+L_{n-1}\\ (n=1,2,3,\\ldots)$. Our third theorem states that if $p\\not=5$ then we can determine $F_{p^a-(\\frac{p^a}5)}$ mod $p^3$ in the following way: $$\\sum_{k=0}^{p^a-1}(-1)^k\\binom{2k}k\\equiv\\left(\\frac{p^a}5\\right)\\left(1-2F_{p^a-(\\frac{p^a}5)}\\right)\\ \\pmod{p^3},$$ which appeared as a conjecture in a paper of Sun and Tauraso in 2010.", "revisions": [ { "version": "v5", "updated": "2014-08-07T11:56:44.000Z" } ], "analyses": { "subjects": [ "11B65", "11A07", "05A10", "11B39" ], "keywords": [ "conjecture", "congruences", "central binomial coefficients", "third theorem states", "jacobi symbol" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.2489P" } } }