arXiv Analytics

Sign in

arXiv:1003.4553 [math.NT]AbstractReferencesReviewsResources

On some lower bounds of some symmetry integrals

Giovanni Coppola

Published 2010-03-23, updated 2010-06-06Version 2

We study the \lq \lq symmetry integral\rq \rq, \thinspace say $I_f$, of some arithmetic functions $f:\N \rightarrow \R$; we obtain from lower bounds of $I_f$ (for a large class of arithmetic functions $f$) lower bounds for the \lq \lq Selberg integral\rq \rq \thinspace of $f$, say $J_f$ (both these integrals give informations about $f$ in almost all the short intervals $[x-h,x+h]$, when $N\le x\le 2N$). In particular, when \thinspace $f=d_k$, the divisor function (having Dirichlet series \thinspace $\zeta^k$, with \thinspace $\zeta$ \thinspace the Riemann zeta function), where $k\ge 3$ is integer, we give lower bounds for the Selberg integrals, say \thinspace $J_k=J_{d_k}$, of the \thinspace $d_k$. We apply elementary methods (Cauchy inequality to get Large Sieve type bounds) in order to give $I_f$ lower bounds.

Comments: PlainTeX(10 p.).Improved results,corrected previous(v1)Lemma (on discrete mean-square,not integral!)
Journal: Afr. Mat. 25 issue 1 (2014), 183-195
Categories: math.NT
Subjects: 11N37, 11N25
Related articles: Most relevant | Search more
arXiv:2403.19320 [math.NT] (Published 2024-03-28)
Mean values of arithmetic functions and application to sums of powers
arXiv:1811.02556 [math.NT] (Published 2018-11-06)
On error term estimates à la Walfisz for mean values of arithmetic functions
arXiv:0708.3557 [math.NT] (Published 2007-08-27, updated 2009-10-10)
On certain arithmetic functions involving exponential divisors, II