{ "id": "1003.4553", "version": "v2", "published": "2010-03-23T23:06:23.000Z", "updated": "2010-06-06T16:36:27.000Z", "title": "On some lower bounds of some symmetry integrals", "authors": [ "Giovanni Coppola" ], "comment": "PlainTeX(10 p.).Improved results,corrected previous(v1)Lemma (on discrete mean-square,not integral!)", "journal": "Afr. Mat. 25 issue 1 (2014), 183-195", "categories": [ "math.NT" ], "abstract": "We study the \\lq \\lq symmetry integral\\rq \\rq, \\thinspace say $I_f$, of some arithmetic functions $f:\\N \\rightarrow \\R$; we obtain from lower bounds of $I_f$ (for a large class of arithmetic functions $f$) lower bounds for the \\lq \\lq Selberg integral\\rq \\rq \\thinspace of $f$, say $J_f$ (both these integrals give informations about $f$ in almost all the short intervals $[x-h,x+h]$, when $N\\le x\\le 2N$). In particular, when \\thinspace $f=d_k$, the divisor function (having Dirichlet series \\thinspace $\\zeta^k$, with \\thinspace $\\zeta$ \\thinspace the Riemann zeta function), where $k\\ge 3$ is integer, we give lower bounds for the Selberg integrals, say \\thinspace $J_k=J_{d_k}$, of the \\thinspace $d_k$. We apply elementary methods (Cauchy inequality to get Large Sieve type bounds) in order to give $I_f$ lower bounds.", "revisions": [ { "version": "v2", "updated": "2010-06-06T16:36:27.000Z" } ], "analyses": { "subjects": [ "11N37", "11N25" ], "keywords": [ "lower bounds", "symmetry integrals", "arithmetic functions", "large sieve type bounds", "riemann zeta function" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.4553C" } } }