arXiv:0906.2132 [math.NT]AbstractReferencesReviewsResources
Computing the Mertens and Meissel-Mertens constants for sums over arithmetic progressions
Alessandro Languasco, Alessandro Zaccagnini
Published 2009-06-11Version 1
We give explicit numerical values with 100 decimal digits for the Mertens constant involved in the asymptotic formula for $\sum\limits_{\substack{p\leq x p\equiv a \bmod{q}}}1/p$ and, as a by-product, for the Meissel-Mertens constant defined as $\sum_{p\equiv a \bmod{q}} (\log(1-1/p)+1/p)$, for $q \in \{3$, ..., $100\}$ and $(q, a) = 1$.
Comments: 12 pages, 6 tables
Journal: Experimental Mathematics 19 (2010), 279-284
Categories: math.NT
Keywords: arithmetic progressions, decimal digits, asymptotic formula, explicit numerical values, by-product
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0712.1665 [math.NT] (Published 2007-12-11)
On the constant in the Mertens product for arithmetic progressions. II. Numerical values
arXiv:1406.7326 [math.NT] (Published 2014-06-27)
Bounding sums of the Möbius function over arithmetic progressions
arXiv:1802.00085 [math.NT] (Published 2018-01-31)
Explicit bounds for primes in arithmetic progressions