arXiv:nucl-th/9301022AbstractReferencesReviewsResources
Geometry, Scaling and Universality in the Mass Distributions in Heavy Ion Collisions
Published 1993-02-01Version 1
Various features of the mass yields in heavy ion collisions are studied. The mass yields are discussed in terms of iterative one dimensional discrete maps. These maps are shown to produce orbits for a monomer or for a nucleus which generate the mass yields and the distribution of cluster sizes. Simple Malthusian dynamics and non-linear Verhulst dynamics are used to illustrate the approach. Nuclear cobwebbing, attractors of the dynamics, and Lyapanov exponents are discussed for the mass distribution. The self-similar property of the Malthusian orbit offers a new variable for the study of scale invariance using power moments of the mass distribution. Correlation lengths, exponents and dimensions associated with scaling relations are developed. Fourier transforms of the mass distribution are used to obtain power spectra which are investigated for a $1/f^{\beta}$ behavior.