arXiv:nucl-th/0405076AbstractReferencesReviewsResources
Spin-one Color Superconductivity in Cold and Dense Quark Matter
Published 2004-05-27Version 1
In this thesis, several color-superconducting phases where quarks of the same flavor form Cooper pairs are investigated. In these phases, a Cooper pair carries total spin one. A systematic classification of theoretically possible phases, discriminated by the color-spin structure of the order parameter and the respective symmetry breaking pattern, is presented. In the weak-coupling limit, i.e., for asymptotically high densities, a universal form of the QCD gap equation is derived, applicable to arbitrary color-superconducting phases. It is applied to several spin-one and spin-zero phases in order to determine their energy gaps and critical temperatures. In some of the spin-one phases the resulting gap function is anisotropic and has point or line nodes. It is shown that the phases with two different gaps violate the well-known BCS relation between the critical temperature and the zero-temperature gap. Moreover, the screening properties of color superconductors regarding gluons and photons are discussed. In particular, it turns out that, contrary to spin-zero color superconductors, spin-one color superconductors exhibit an electromagnetic Meissner effect. This property is proven by symmetry arguments as well as by an explicit calculation of the gluon and photon Meissner masses.