arXiv:math/9812143 [math.NT]AbstractReferencesReviewsResources
A New Representation of the Riemann Zeta Function $ΞΆ(s)$
Published 1998-12-24Version 1
A generalization of a well-known relation between the Riemann zeta function $\zeta(s)$ and Bernoulli numbers $B_n$ is obtained. The formula is a new representation of the Riemann zeta function in terms of a nested series of Bernoulli numbers.
Comments: 12 pages, 2 figures, LaTeX2e, \usepackage[dvips]
Related articles: Most relevant | Search more
arXiv:0709.2947 [math.NT] (Published 2007-09-19)
Sums of Products of Bernoulli numbers of the second kind
An efficient algorithm for the computation of Bernoulli numbers
arXiv:math/0109108 [math.NT] (Published 2001-09-17)
Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles