arXiv:math/9611212 [math.GR]AbstractReferencesReviewsResources
Some definition of the Artin exponent of finite groups
Published 1996-11-11Version 1
The Artin exponent induced from cyclic subgroups of finite groups was studied extensively by T.Y. Lam. A Burnside ring theoretic version of Lam's results for $p$-groups was given by the author in an earlier paper. Here we look at the Artin exponent induced from the elementary abelian subgroups of finite $p$-groups using some results of A. Dress.
Categories: math.GR
Related articles: Most relevant | Search more
arXiv:2303.12844 [math.GR] (Published 2023-03-22)
Construction of 2-local finite groups of a type studied by Solomon and Benson: Correction
Representations of polygons of finite groups
arXiv:1404.3342 [math.GR] (Published 2014-04-13)
Cohomology of algebraic groups, finite groups, and Lie algebras: Interactions and Connections