arXiv Analytics

Sign in

arXiv:math/0702363 [math.GR]AbstractReferencesReviewsResources

On the intersection of free subgroups in free products of groups

Warren Dicks, S. V. Ivanov

Published 2007-02-13Version 1

Let (G_i | i in I) be a family of groups, let F be a free group, and let G = F *(*I G_i), the free product of F and all the G_i. Let FF denote the set of all finitely generated subgroups H of G which have the property that, for each g in G and each i in I, H \cap G_i^{g} = {1}. By the Kurosh Subgroup Theorem, every element of FF is a free group. For each free group H, the reduced rank of H is defined as r(H) = max{rank(H) -1, 0} in \naturals \cup {\infty} \subseteq [0,\infty]. To avoid the vacuous case, we make the additional assumption that FF contains a non-cyclic group, and we define sigma := sup{r(H\cap K)/(r(H)r(K)) : H, K in FF and r(H)r(K) \ne 0}, sigma in [1,\infty]. We are interested in precise bounds for sigma. In the special case where I is empty, Hanna Neumann proved that sigma in [1,2], and conjectured that sigma = 1; almost fifty years later, this interval has not been reduced. With the understanding that \infty/(\infty -2) = 1, we define theta := max{|L|/(|L|-2) : L is a subgroup of G and |L| > 2}, theta in [1,3]. Generalizing Hanna Neumann's theorem, we prove that sigma in [theta, 2 theta], and, moreover, sigma = 2 theta if G has 2-torsion. Since sigma is finite, FF is closed under finite intersections. Generalizing Hanna Neumann's conjecture, we conjecture that sigma = theta whenever G does not have 2-torsion.

Comments: 28 pages, no figures
Journal: Math. Proc. Cambridge Philos. Soc. 144(2008), 511-534.
Categories: math.GR
Subjects: 20E06
Related articles: Most relevant | Search more
arXiv:0804.1999 [math.GR] (Published 2008-04-12)
Intersection of subgroups in free groups and homotopy groups
arXiv:0802.0033 [math.GR] (Published 2008-01-31, updated 2008-08-20)
Intersections and joins of free groups
arXiv:1004.0222 [math.GR] (Published 2010-04-01, updated 2011-04-17)
Generalizing Magnus' characterization of free groups to some free products