arXiv Analytics

Sign in

arXiv:math/0608534 [math.GR]AbstractReferencesReviewsResources

On Automorphisms of Finite $p$-groups

Manoj K. Yadav

Published 2006-08-22, updated 2008-01-29Version 2

Let $G$ be a finite $p$-group such that $x\Z(G) \subseteq x^G$ for all $x \in G- \Z(G)$, where $x^G$ denotes the conjugacy class of $x$ in $G$. Then $|G|$ divides $|\Aut(G)|$, where $\Aut(G)$ is the group of all automorphisms of $G$.

Comments: Appeared in Journal of Group Theory
Journal: J. Group Theory, Vol. 10 (2007), 859-866
Categories: math.GR
Subjects: 20D45, 20D15
Related articles: Most relevant | Search more
arXiv:1508.00725 [math.GR] (Published 2015-08-04)
A note on automorphisms of finite $p$-groups
arXiv:1803.07853 [math.GR] (Published 2018-03-21)
On automorphisms of finite $p$-groups
arXiv:1609.02380 [math.GR] (Published 2016-09-08)
Automorphisms of K-groups II