arXiv Analytics

Sign in

arXiv:math/0502104 [math.AP]AbstractReferencesReviewsResources

On the local Smoothness of Solutions of the Navier-Stokes Equations

Hongjie Dong, Dapeng Du

Published 2005-02-05Version 1

We consider the Cauchy problem for incompressible Navier-Stokes equations $u_t+u\nabla_xu-\Delta u+\nabla p=0, div u=0 in R^d \times R^+$ with initial data $a\in L^d(R^d)$, and study in some detail the smoothing effect of the equation. We prove that for $T<\infty$ and for any positive integers $n$ and $m$ we have $t^{m+n/2}D^m_tD^{n}_x u\in L^{d+2}(R^d\times (0,T))$, as long as the $\|u\|_{L^{d+2}_{x,t}(R^d\times (0,T))}$ stays finite.

Related articles: Most relevant | Search more
arXiv:1009.2198 [math.AP] (Published 2010-09-11, updated 2010-09-26)
Solution of the Cauchy problem for the Navier - Stokes and Euler equations
arXiv:math/0412241 [math.AP] (Published 2004-12-13)
Uniqueness/nonuniqueness for nonnegative solutions of the Cauchy problem for $u_t=Δu-u^p$ in a punctured space
arXiv:math/0607456 [math.AP] (Published 2006-07-19, updated 2006-08-16)
Well-posedness of the Cauchy problem for the fractional power dissipative equations