arXiv:math/0209323 [math.AP]AbstractReferencesReviewsResources
A sufficient condition for a finite-time $ L_2 $ singularity of the 3d Euler Equation
Published 2002-09-24Version 1
A sufficient condition is derived for a finite-time $L_2$ singularity of the 3d incompressible Euler equations, making appropriate assumptions on eigenvalues of the Hessian of pressure. Under this condition $\lim_{t \to T_*} \sup | \frac{D \o} {Dt} |_{L_2(\vO)} = \infty$, where $~ \vO \subset \R3$ moves with the fluid. In particular, $|{\o}|$, $|\S_{ij}| , and $|\P_{ij}|$ all become unbounded at one point $(x_1,T_1)$, $T_1$ being the first blow-up time in $L_2$.
Comments: AMS_Tex, 8 pages
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1011.5514 [math.AP] (Published 2010-11-24)
Dynamic Growth Estimates of Maximum Vorticity for 3D Incompressible Euler Equations and the SQG Model
Finite Time Blow-up for the 3D Incompressible Euler Equations
arXiv:2308.12197 [math.AP] (Published 2023-08-23)
Finite time singularities to the 3D incompressible Euler equations for solutions in $C^{\infty}(\mathbb{R}^3 \setminus \{0\})\cap C^{1,α}\cap L^2$