arXiv Analytics

Sign in

arXiv:math/0206031 [math.NT]AbstractReferencesReviewsResources

The distribution of values of L(1,chi_d)

Andrew Granville, Kannan Soundararajan

Published 2002-06-04Version 1

In this paper we investigate the distribution of values of L(1,chi) as chi ranges over primitive real characters. In particular we focus on the extent to which this distribution may be approximated by "random Euler products." Our work also establishes a recent conjecture of Montgomery and Vaughan on the frequency of large (or small) values of L(1,chi).

Related articles: Most relevant | Search more
arXiv:1110.0078 [math.NT] (Published 2011-10-01, updated 2012-04-16)
The distribution of the maximum of character sums
arXiv:math/0302277 [math.NT] (Published 2003-02-22, updated 2004-01-10)
On the distribution of matrix elements for the quantum cat map
arXiv:1301.3232 [math.NT] (Published 2013-01-15)
Gaps between zeros of $ζ(s)$ and the distribution of zeros of $ζ'(s)$