arXiv Analytics

Sign in

arXiv:hep-th/9811157AbstractReferencesReviewsResources

Implicit Regularisation Technique: Calculation of the Two-loop $φ^4_4$-theory $β$-function

A. Brizola, O. A. Battistel, Marcos Sampaio, M. C. Nemes

Published 1998-11-16, updated 1999-02-09Version 2

We propose an implicit regularisation scheme. The main advantage is that since no explicit use of a regulator is made, one can in principle avoid undesirable symmetry violations related to its choice. The divergent amplitudes are split into basic divergent integrals which depend only on the loop momenta and finite integrals. The former can be absorbed by a renormalisation procedure whereas the latter can be evaluated without restrictions. We illustrate with the calculation of the $QED$ and $\phi^4_4$-theory $\beta$-function to one and two-loop order, respectively.

Comments: 7 pages, LaTeX, 2 figures (eps), Text reorganised and new reference
Journal: Mod.Phys.Lett. A14 (1999) 1509-1518
Categories: hep-th
Related articles: Most relevant | Search more
arXiv:0812.3846 [hep-th] (Published 2008-12-19, updated 2009-03-12)
Systematization of Basic Divergent Integrals in Perturbation Theory and Renormalization Group Functions
arXiv:1412.0549 [hep-th] (Published 2014-12-01)
Calculation of the multiplicative anomaly
arXiv:1807.11872 [hep-th] (Published 2018-07-31)
A technical note on the calculation of GJMS (Rac and Di) operator determinants