arXiv Analytics

Sign in

arXiv:hep-th/9606075AbstractReferencesReviewsResources

The Effective Action for Local Composite Operators $Φ^2(x)$ and $Φ^4(x)$

Anna Okopińska

Published 1996-06-13Version 1

The generating functionals for the local composite operators, $\Phi^2(x)$ and $\Phi^4(x)$, are used to study excitations in the scalar quantum field theory with $\lambda \Phi^4$ interaction. The effective action for the composite operators is obtained as a series in the Planck constant $\hbar$, and the two- and four-particle propagators are derived. The numerical results are studied in the space-time of one dimension, when the theory is equivalent to the quantum mechanics of an anharmonic oscillator. The effective potential and the poles of the composite propagators are obtained as series in $\hbar$, with effective mass and coupling determined by non-perturbative gap equations. This provides a systematic approximation method for the ground state energy, and for the second and fourth excitations. The results show quick convergence to the exact values, better than that obtained without including the operator $\Phi^4$.

Comments: 15 pages, plain Latex, 1 compressed and uuencoded Postscript figure
Journal: Int.J.Mod.Phys. A12 (1997) 585-606
Categories: hep-th
Related articles: Most relevant | Search more
arXiv:1012.1548 [hep-th] (Published 2010-12-07)
Entanglement entropy for odd spheres
arXiv:hep-th/9410204 (Published 1994-10-27)
Functional determinants and effective actions:Corrigenda
arXiv:hep-th/9711129 (Published 1997-11-18, updated 1998-02-19)
Variational Calculation of the Effective Action