arXiv:hep-th/9305010AbstractReferencesReviewsResources
Derivation of the Verlinde Formula from Chern-Simons Theory and the G/G model
Published 1993-05-04, updated 1993-05-05Version 2
We give a derivation of the Verlinde formula for the $G_{k}$ WZW model from Chern-Simons theory, without taking recourse to CFT, by calculating explicitly the partition function $Z_{\Sigma\times S^{1}}$ of $\Sigma\times S^{1}$ with an arbitrary number of labelled punctures. By a suitable gauge choice, $Z_{\Sigma\times S^{1}}$ is reduced to the partition function of an Abelian topological field theory on $\Sigma$ (a deformation of non-Abelian BF and Yang-Mills theory) whose evaluation is straightforward. This relates the Verlinde formula to the Ray-Singer torsion of $\Sigma\times S^{1}$. We derive the $G_{k}/G_{k}$ model from Chern-Simons theory, proving their equivalence, and give an alternative derivation of the Verlinde formula by calculating the $G_{k}/G_{k}$ path integral via a functional version of the Weyl integral formula. From this point of view the Verlinde formula arises from the corresponding Jacobian, the Weyl determinant. Also, a novel derivation of the shift $k\ra k+h$ is given, based on the index of the twisted Dolbeault complex.