arXiv Analytics

Sign in

arXiv:hep-th/9202011AbstractReferencesReviewsResources

Scattering and Thermodynamics of Integrable N=2 Theories

P. Fendley, K. Intriligator

Published 1992-02-04Version 1

We study $N$=2 supersymmetric integrable theories with spontaneously-broken \Zn\ symmetry. They have exact soliton masses given by the affine $SU(n)$ Toda masses and fractional fermion numbers given by multiples of $1/n$. The basic such $N$=2 integrable theory is the $A_n$-type $N$=2 minimal model perturbed by the most relevant operator. The soliton content and exact S-matrices are obtained using the Landau-Ginzburg description. We study the thermodynamics of these theories and calculate the ground-state energies exactly, verifying that they have the correct conformal limits. We conjecture that the soliton content and S-matrices in other integrable \Zn\ $N$=2 theories are given by the tensor product of the above basic $N$=2 \Zn\ scattering theory with various $N$=0 theories. In particular, we consider integrable perturbations of $N$=2 Kazama-Suzuki models described by generalized Chebyshev potentials, $CP^{n-1}$ sigma models, and $N$=2 sine-Gordon and its affine Toda generalizations.

Comments: 31 pages
Journal: Nucl.Phys. B380 (1992) 265-292
Categories: hep-th
Related articles: Most relevant | Search more
arXiv:hep-th/9705147 (Published 1997-05-20)
Loss of quantum coherence through scattering off virtual black holes
arXiv:2212.10213 [hep-th] (Published 2022-12-20)
Bell inequalities in 2-2 scattering
arXiv:hep-th/0105012 (Published 2001-05-02, updated 2001-06-14)
Scattering of Noncommutative (n,1) Solitons