arXiv:hep-th/0205249AbstractReferencesReviewsResources
Is the energy density of the ground state of the sine-Gordon model unbounded from below for beta^2 > 8 pi ?
Published 2002-05-23, updated 2003-06-02Version 3
We discuss Coleman's theorem concerning the energy density of the ground state of the sine-Gordon model proved in Phys. Rev. D 11, 2088 (1975). According to this theorem the energy density of the ground state of the sine-Gordon model should be unbounded from below for coupling constants beta^2 > 8 pi. The consequence of this theorem would be the non-existence of the quantum ground state of the sine-Gordon model for beta^2 > 8 pi. We show that the energy density of the ground state in the sine-Gordon model is bounded from below even for beta^2 > 8 pi. This result is discussed in relation to Coleman's theorem (Comm. Math. Phys. 31, 259 (1973)), particle mass spectra and soliton-soliton scattering in the sine-Gordon model.