arXiv:hep-ph/9812267AbstractReferencesReviewsResources
A Theoretical Reappraisal of Branching Ratios and CP Asymmetries in the Decays $B \to (X_d,X_s) \ell^+ \ell^-$ and Determination of the CKM Parameters
Published 1998-12-07Version 1
We present a theoretical reappraisal of the branching ratios and CP asymmetries for the decays $ B \to X_q \ell^+ \ell^-$, with $q=d,s$, taking into account current theoretical uncertainties in the description of the inclusive decay amplitudes from the long-distance contributions, an improved treatment of the renormalization scale dependence, and other parametric dependencies. Concentrating on the partial branching ratios $\Delta {\cal B}(B \to X_q \ell^+ \ell^-)$, integrated over the invariant dilepton mass region $1 {GeV}^2 \leq s \leq 6 {GeV}^2$, we calculate theoretical precision on the charge-conjugate averaged partial branching ratios $<\Delta{\cal B}_q >= (\Delta {\cal B}(B \to X_q \ell^+ \ell^-) + \Delta {\cal B}(\bar{B} \to \bar{X}_q \ell^+ \ell^-))/2$, CP asymmetries in partial decay rates $(a_{CP})_q=(\Delta {\cal B}(B \to X_q \ell^+ \ell^-) - \Delta {\cal B}(\bar{B} \to \bar{X}_q \ell^+ \ell^-))/(2 < \Delta{\cal B}_q >)$, and the ratio of the branching ratios $\Delta {\cal R} = < \Delta{\cal B}_d >/< \Delta{\cal B}_s>$. For the central values of the CKM parameters, we find $<\Delta {\cal B}_s > =(2.22^{+0.29}_{-0.30}) \times 10^{-6}$, $<\Delta {\cal B}_d > =(9.61^{+1.32}_{-1.47}) \times 10^{-8}$, $(a_{CP})_s =-(0.19^{+0.17}_{-0.19})%$, $(a_{CP})_d =(4.40^{+3.87}_{-4.46})%$, and $\Delta {\cal R} =(4.32 \pm 0.03)%$. The dependence of $<\Delta{\cal B}_d>$ and $\Delta {\cal R}$ on the CKM parameters is worked out and the resulting constraints on the unitarity triangle from an eventual measurement of $\Delta {\cal R}$ are illustrated.