arXiv:hep-ph/0502174AbstractReferencesReviewsResources
From Entropy and Jet Quenching to Deconfinement?
Berndt Muller, Krishna Rajagopal
Published 2005-02-18Version 1
The challenge of demonstrating that the matter produced in heavy ion collisions is a deconfined quark-gluon plasma, as predicted by lattice QCD calculations, is the challenge of measuring the number of thermodynamic degrees of freedom \nu ~ \epsilon/T^4 at the time t0 at which the matter comes into approximate local thermal equilibrium and begins to behave like a hydrodynamic fluid. Data from experiments done at the Relativistic Heavy Ion Collider have been used to estimate t0 and to put a lower bound on the energy density \epsilon(t0). However, measuring \nu has seemed out of reach, because no current data serve even as qualitative proxies for the temperature T(t0). We point out that \nu may equally appropriately be defined via \nu ~s^4/epsilon^3, where s is the entropy density, which can be estimated from the measured final state entropy. This estimate is based on the testable assumption of an isentropic expansion. The observation of jet quenching has the potential to provide an upper bound on the energy density at early times. Our goal is to motivate such an analysis by pointing out that it would set a lower bound on \nu.