arXiv:hep-ph/0404214AbstractReferencesReviewsResources
Illuminating interfaces between phases of a U(1) x U(1) gauge theory
Published 2004-04-23Version 1
We study reflection and transmission of light at the interface between different phases of a U(1) x U(1) gauge theory. On each side of the interface, one can choose a basis so that one generator is free (allowing propagation of light), and the orthogonal one may be free, Higgsed, or confined. However, the basis on one side will in general be rotated relative to the basis on the other by some angle alpha. We calculate reflection and transmission coefficients for both polarizations of light and all 8 types of boundary, for arbitrary alpha. We find that an observer measuring the behavior of light beams at the boundary would be able to distinguish 4 different types of boundary, and we show how the remaining ambiguity arises from the principle of complementarity (indistinguishability of confined and Higgs phases) which leaves observables invariant under a global electric/magnetic duality transformation. We also explain the seemingly paradoxical behavior of Higgs/Higgs and confined/confined boundaries, and clarify some previous arguments that confinement must involve magnetic monopole condensation.