arXiv Analytics

Sign in

arXiv:hep-ph/0312044AbstractReferencesReviewsResources

Pi N sigma-term and chiral-odd twist-3 distribution function e(x) of the nucleon in the chiral quark soliton model

Y. Ohnishi, M. Wakamatsu

Published 2003-12-03Version 1

The isosinglet combination of the chiral-odd twist-3 distribution function $e^u(x)+e^d(x)$ of the nucleon has outstanding properties that its first moment is proportional to the well-known $\pi N$ sigma-term and that it contains a $\delta$-function singularity at $x=0$. These two features are inseparably connected in that the above sum rule would be violated, if there is no such a singularity in $e^u(x)+e^d(x)$. Very recently, we found that the physical origin of this $\delta$-function singularity can be traced back to the long-range quark-quark correlation of scalar type, which signals the spontaneous chiral symmetry breaking of the QCD vacuum. The main purpose of the present paper is to give complete theoretical predictions for the chiral-odd twist-3 distribution function $e^a(x)$ of each flavor $a$ on the basis of the chiral quark soliton model, without recourse to the derivative expansion type approximation. These theoretical predictions are then compared with the empirical information extracted from the CLAS data of the semi-inclusive DIS processes by assuming the Collins mechanism only. A good agreement with the CLAS data is indicative of a sizable violation of the $\pi N$ sigma-term sum rule, or equivalently, the existence of a $\delta$-function singularity in $e^u(x) + e^d(x)$.

Comments: 35 pages, 10 figures
Journal: Phys.Rev. D69 (2004) 114002
Categories: hep-ph, hep-ex, nucl-th
Related articles: Most relevant | Search more
arXiv:hep-ph/0212356 (Published 2002-12-24, updated 2003-01-24)
Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model (II) -- theoretical formalism --
arXiv:hep-ph/0411204 (Published 2004-11-16)
Chiral-Odd Twist-3 Distribution Function $e(x)$
arXiv:hep-ph/0012331 (Published 2000-12-25, updated 2000-12-26)
Chiral-odd distribution functions in the chiral quark soliton model