arXiv Analytics

Sign in

arXiv:hep-lat/0301029AbstractReferencesReviewsResources

Renormalization group improved action on anisotropic lattices

S. Ejiri, K. Kanaya, Y. Namekawa, T. Umeda

Published 2003-01-30, updated 2003-05-14Version 2

We study a block spin transformation in the SU(3) lattice gauge theory on anisotropic lattices to obtain Iwasaki's renormalization group improved action for anisotropic cases. For the class of actions with plaquette and $1\times2$ rectangular terms, we determine the improvement parameters as functions of the anisotropy $\xi= a_s/a_t$. We find that the program of improvement works well also on anisotropic lattices. From a study of an indicator which estimates the distance to the renormalized trajectory, we show that, for the range of the anisotropy $\xi \approx 1$--4, the coupling parameters previously determined for isotropic lattices improve the theory considerably.

Comments: 15 pages, 10 figures
Journal: Phys.Rev. D68 (2003) 014502
Categories: hep-lat
Subjects: 12.38.Gc, 11.15.Ha
Related articles: Most relevant | Search more
arXiv:hep-lat/0311014 (Published 2003-11-11)
The Hamiltonian limit of (3+1)D SU(3) lattice gauge theory on anisotropic lattices
arXiv:hep-lat/0510074 (Published 2005-10-13)
Glueball Spectrum and Matrix Elements on Anisotropic Lattices
Y. Chen et al.
arXiv:hep-lat/0412034 (Published 2004-12-22, updated 2005-03-03)
A Numerical Study of Improved Quark Actions on Anisotropic Lattices