arXiv:hep-ex/0508037AbstractReferencesReviewsResources
Observation of the ^1P_1 State of Charmonium
Published 2005-08-16, updated 2006-04-18Version 2
The spin-singlet P-wave state of charmonium, hc(1P1), has been observed in the decay psi(2S) -> pi0 hc followed by hc -> gamma etac. Inclusive and exclusive analyses of the M(hc) spectrum have been performed. Two complementary inclusive analyses select either a range of energies for the photon emitted in hc -> gamma etac or a range of values of M(etac). These analyses, consistent with one another within statistics, yield M(h_c) =[3524.9 +/- 0.7 (stat) +/- 0.4 (sys)]MeV/c^2 and a product of the branching ratios B_psi(psi(2S) -> pi0 hc) x B_h(hc -> gamma etac) = [3.5 +/- 1.0 (stat) +/- 0.7 (sys)] x 10^{-4}. When the etac is reconstructed in seven exclusive decay modes, 17.5 +/- 4.5 hc events are seen with an average mass M(hc) = [3523.6 +/- 0.9 (stat) +/- 0.5 (sys)] MeV/c^2, and B_psi x B_h = [5.3 +/- 1.5 (stat) +/- 1.0 (sys)] x 10^{-4}. Because the inclusive and exclusive data samples are largely independent they are combined to yield an overall mass M(hc) = [3524.4 +/- 0.6 (stat) +/- 0.4 (sys)]MeV/c^2 and product of branching ratios B_psi x B_h = [4.0 +/- 0.8 (stat) +/- 0.7 (sys)] x 10^{-4}. The hc mass implies a P-wave hyperfine splitting Delta M_{HF}(1P) \equiv M(1^3P)-M(1^1P_1) = [1.0 +/- 0.6 (stat) +/- 0.4 (sys)] MeV/c^2.