arXiv:cond-mat/0701126AbstractReferencesReviewsResources
Continuous time random walk and parametric subordination in fractional diffusion
Rudolf Gorenflo, Francesco Mainardi, Alessandro Vivoli
Published 2007-01-06, updated 2007-05-01Version 3
The well-scaled transition to the diffusion limit in the framework of the theory of continuous-time random walk (CTRW)is presented starting from its representation as an infinite series that points out the subordinated character of the CTRW itself. We treat the CTRW as a combination of a random walk on the axis of physical time with a random walk in space, both walks happening in discrete operational time. In the continuum limit we obtain a generally non-Markovian diffusion process governed by a space-time fractional diffusion equation. The essential assumption is that the probabilities for waiting times and jump-widths behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. By what we call parametric subordination, applied to a combination of a Markov process with a positively oriented L\'evy process, we generate and display sample paths for some special cases.