arXiv:cond-mat/0512055AbstractReferencesReviewsResources
Nonlinear dynamics in one dimension: On a criterion for coarsening and its temporal law
Published 2005-12-02, updated 2006-02-22Version 2
We develop a general criterion about coarsening for a class of nonlinear evolution equations describing one dimensional pattern-forming systems. This criterion allows one to discriminate between the situation where a coarsening process takes place and the one where the wavelength is fixed in the course of time. An intermediate scenario may occur, namely `interrupted coarsening'. The power of the criterion lies in the fact that the statement about the occurrence of coarsening, or selection of a length scale, can be made by only inspecting the behavior of the branch of steady state periodic solutions. The criterion states that coarsening occurs if lambda'(A)>0 while a length scale selection prevails if lambda'(A)<0, where $lambda$ is the wavelength of the pattern and A is the amplitude of the profile. This criterion is established thanks to the analysis of the phase diffusion equation of the pattern. We connect the phase diffusion coefficient D(lambda) (which carries a kinetic information) to lambda'(A), which refers to a pure steady state property. The relationship between kinetics and the behavior of the branch of steady state solutions is established fully analytically for several classes of equations. Another important and new result which emerges here is that the exploitation of the phase diffusion coefficient enables us to determine in a rather straightforward manner the dynamical coarsening exponent. Our calculation, based on the idea that |D(lambda)|=lambda^2/t, is exemplified on several nonlinear equations, showing that the exact exponent is captured. Some speculations about the extension of the present results to higher dimension are outlined.