arXiv:cond-mat/0311367AbstractReferencesReviewsResources
Largest Lyapunov exponent of long-range XY systems
Raul O. Vallejos, Celia Anteneodo
Published 2003-11-16Version 1
We calculate analytically the largest Lyapunov exponent of the so-called $\alpha XY$ Hamiltonian in the high energy regime. This system consists of a $d$-dimensional lattice of classical spins with interactions that decay with distance following a power-law, the range being adjustable. In disordered regimes the Lyapunov exponent can be easily estimated by means of the "stochastic approach", a theoretical scheme based on van Kampen's cumulant expansion. The stochastic approach expresses the Lyapunov exponent as a function of a few statistical properties of the Hessian matrix of the interaction that can be calculated as suitable microcanonical averages. We have verified that there is a very good agreement between theory and numerical simulations.