arXiv Analytics

Sign in

arXiv:cond-mat/0301502AbstractReferencesReviewsResources

The Fokker-Planck operator at a continuous phase transition

Moshe Schwartz

Published 2003-01-26, updated 2003-05-31Version 4

I consider a physical system described by a continuous field theory and enclosed in a large but finite cubical box with periodic boundary conditions. The system is assumed to undergo a continuous phase transition at some critical point. The \phi^4 theory that is a continuous version of the Ising model is such a system but there are many other examples corresponding to higher spin, higher symmetry etc. The eigenfunctions of the corresponding Fokker-Planck operator can be chosen, of course, to be eigenfunctions of the momentum operator. It is shown that the eigenvalues of the FP operator, corresponding to each eigenvalue q of the momentum operator, evaluated at a transition point of the finite system, accumulate at zero, when the size of the system tends to infinity. There are many reasonable ways of defining a critical temperature of a finite system, that tends to the critical temperature of the infinite system as the size of the system tends to infinity. The accumulation of eigenvalues is neither affected by the specific choice of critical temperature of the finite system nor by whether the system is below or above its upper critical dimension.

Comments: 15 pages. accepted for publication in J. Phys. A
Categories: cond-mat.stat-mech
Related articles: Most relevant | Search more
arXiv:0810.0482 [cond-mat.stat-mech] (Published 2008-10-02, updated 2008-11-28)
Critical temperature of non-interacting Bose gases on disordered lattices
arXiv:cond-mat/0506033 (Published 2005-06-01, updated 2005-11-04)
Ferromagnetism in one dimension: Critical Temperature
arXiv:2109.14762 [cond-mat.stat-mech] (Published 2021-09-29, updated 2022-02-03)
Critical temperature of one-dimensional Ising model with long-range interaction revisited