arXiv Analytics

Sign in

arXiv:cond-mat/0110074AbstractReferencesReviewsResources

Multi-wall carbon nanotubes as quantum dots

M. R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, C. Schoenenberger

Published 2001-10-03Version 1

We have measured the differential conductance dI/dV of individual multi-wall carbon nanotubes (MWNT) of different lengths. A cross-over from wire-like (long tubes) to dot-like (short tubes) behavior is observed. dI/dV is dominated by random conductance fluctuations (UCF) in long MWNT devices (L=2...7 $\mu m$), while Coulomb blockade and energy level quantization are observed in short ones (L=300 nm). The electron levels of short MWNT dots are nearly four-fold degenerate (including spin) and their evolution in magnetic field (Zeeman splitting) agrees with a g-factor of 2. In zero magnetic field the sequential filling of states evolves with spin S according to S=0 -> 1/2 -> 0... In addition, a Kondo enhancement of the conductance is observed when the number of electrons on the tube is odd.

Related articles: Most relevant | Search more
arXiv:1007.2436 [cond-mat.mes-hall] (Published 2010-07-14)
The Interplay of Charge and Spin in Quantum Dots: The Ising Case
arXiv:cond-mat/0412544 (Published 2004-12-20)
Fano resonances and decoherence in transport through quantum dots
arXiv:cond-mat/0601327 (Published 2006-01-16, updated 2006-01-21)
Resonant tunneling and Fano resonance in quantum dots with electron-phonon interaction