arXiv Analytics

Sign in

arXiv:cond-mat/0102347AbstractReferencesReviewsResources

Unusual Properties of Anisotropic Hall Gas: Implication to Metrology of the Integer Quantum Hall Effect

K. Ishikawa, N. Maeda

Published 2001-02-20, updated 2002-04-16Version 3

Physical properties of anisotropic compressible quantum Hall states and their implications to integer quantum Hall effect are studied based on a mean field theory on the von Neumann lattice. It is found that the Hall gas has unusual thermodynamic properties such as negative pressure and negative compressibility and unusual transport properties. Transport properties and density profile of Hall gas states at half fillings agree with those of anisotropic states discovered experimentally in higher Landau levels. Hall gas formed in the bulk does not spread but shrinks, owing to negative pressure, and a strip of Hall gas gives abnormal electric transport at finite temperature. Conductances at finite temperature and finite injected current agree with recent experiments on collapse and breakdown phenomena of the integer quantum Hall effect. As a byproduct, existence of new quantum Hall regime, dissipative quantum Hall regime, in which Hall resistance is quantized exactly even in the system of small longitudinal resistance is derived.

Related articles: Most relevant | Search more
arXiv:cond-mat/9707105 (Published 1997-07-10, updated 1998-02-05)
Universality in the Crossover between Edge Channel and Bulk Transport in the Quantum Hall Regime
arXiv:cond-mat/0211250 (Published 2002-11-13)
Duality and integer quantum Hall effect in isotropic 3D crystals
arXiv:cond-mat/9906261 (Published 1999-06-17, updated 1999-09-09)
Phase Diagram of Integer Quantum Hall Effect