arXiv:astro-ph/9912207AbstractReferencesReviewsResources
Nature vs. Nurture: The Origin of Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars
D. Marsden, R. E. Lingenfelter, R. E. Rothschild, J. C. Higdon
Published 1999-12-09, updated 2000-11-17Version 3
Soft gamma-ray repeaters (SGRs) and anomalous x-ray pulsars (AXPs) are young and radio-quiet x-ray pulsars which have been rapidly spun-down to slow spin periods clustered in the range 5-12 s. Most of these unusual pulsars also appear to be associated with supernova shell remnants (SNRs) with typical ages <30 kyr. By examining the sizes of these remnants versus their ages, we demonstrate that the interstellar media which surrounded the SGR and AXP progenitors and their SNRs were unusually dense compared to the environments around most young radio pulsars and SNRs. We explore the implications of this evidence on magnetar and propeller-based models for the rapid spin-down of SGRs and AXPs. We find that evidence of dense environments is not consistent with the magnetar model unless a causal link can be shown between the development of magnetars and the external ISM. Propeller-driven spin-down by fossil accretion disks for SGRs and AXPs appears to be consistent with dense environments since the environment can facilitate the formation of such a disk. This may occur in two ways: 1) formation of a ``pushback'' disks from the innermost ejecta pushed back by prompt reverse shocks from supernova remnant interactions with massive progenitor wind material stalled in dense surrounding gas, or 2) acquisition of disks by a high velocity neutron stars, which may be able to capture a sufficient amounts of co-moving outflowing ejecta slowed by the prompt reverse shocks in dense environments.