arXiv Analytics

Sign in

arXiv:astro-ph/9808197AbstractReferencesReviewsResources

Non parametric reconstruction of distribution functions from observed galactic disks

C. Pichon, E. Thiebaut

Published 1998-08-19Version 1

A general inversion technique for the recovery of the underlying distribution function for observed galactic disks is presented and illustrated. Under the assumption that these disks are axi-symmetric and thin, the proposed method yields the unique distribution compatible with all the observables available. The derivation may be carried out from the measurement of the azimuthal velocity distribution arising from positioning the slit of a spectrograph along the major axis of the galaxy. More generally, it may account for the simultaneous measurements of velocity distributions corresponding to slits presenting arbitrary orientations with respect to the major axis. The approach is non-parametric, i.e. it does not rely on a particular algebraic model for the distribution function. Special care is taken to account for the fraction of counter-rotating stars which strongly affects the stability of the disk. An optimisation algorithm is devised -- generalising the work of Skilling & Bryan (1984) -- to carry this truly two-dimensional ill-conditioned inversion efficiently. The performances of the overall inversion technique with respect to the noise level and truncation in the data set is investigated with simulated data. Reliable results are obtained up to a mean signal to noise ratio of~5 and when measurements are available up to $4 R_{e}$. A discussion of the residual biases involved in non parametric inversions is presented. Prospects of application to observed galaxies and other inversion problems are discussed.

Comments: 11 pages, 13 figures; accepted for publication by MNRAS
Categories: astro-ph
Related articles: Most relevant | Search more
arXiv:astro-ph/0307389 (Published 2003-07-22)
The puzzle about the radial cut-off in galactic disks
arXiv:astro-ph/0207641 (Published 2002-07-30)
Gravity-driven Turbulence in Galactic Disks
arXiv:astro-ph/0412391 (Published 2004-12-15)
Clues on the Structure and Composition of Galactic Disks from Studies of "Superthin" Spirals: the Case of UGC3697