arXiv:astro-ph/0211116AbstractReferencesReviewsResources
The Magnetic Field in the Convection Zone
Alberto Bigazzi, Alexander A. Ruzmaikin
Published 2002-11-06Version 1
One of the key questions in solar physics that remains to be answered concerns the strength and the distribution of the magnetic fields at the base of the convection zone. The flux tube dynamics requires that toroidal fields of strength as large as 100 kilogauss be present at the base of the convection zone. The kinetic-magnetic equipartition argument leads to smaller field strengths. For possible detection of these relatively small (compared to pressure effects) fields by helioseismic methods it is important to know the range of the field strengths and their distribution. We estimate a range for the toroidal magnetic field strengths at the base of the convection zone using dynamo simulations in a spherical shell. These simulations involve the distribution of rotation provided by helioseismic inversions of the GONG and MDI data. Combining the simulations with the observed line-of-sight surface poloidal field we extract the spatial pattern and magnitude of the mean toroidal magnetic field at the base of the convection zone.