arXiv:astro-ph/0011286AbstractReferencesReviewsResources
Photometric and Spectroscopic Analysis of Cool White Dwarfs with Trigonometric Parallax Measurements
P. Bergeron, S. K. Leggett, Maria Teresa Ruiz
Published 2000-11-15Version 1
A photometric and spectroscopic analysis of 152 cool white dwarf stars is presented. The discovery of 7 new DA white dwarfs, 2 new DQ white dwarfs, 1 new magnetic white dwarf, and 3 weak magnetic white dwarf candidates, is reported, as well as 19 known or suspected double degenerates. The photometric energy distributions, the Halpha line profiles, and the trigonometric parallax measurements are combined and compared to model atmosphere calculations to determine the effective temperature and the radius of each object, and also to constrain the atmospheric composition. New evolutionary sequences with C/O cores with thin and thick hydrogen layers are used to derive masses and ages. We confirm the existence of a range in Teff between 5000 and 6000K where almost all white dwarfs have H-rich atmospheres. There is little evidence for mixed H/He dwarfs, with the exception of 2 He-rich DA stars, and 5 C2H white dwarfs which possibly have mixed H/He/C atmospheres. The DQ sequence terminates near 6500K, below which they are believed to turn into C2H stars. True DC stars slightly above this temperature are found to exhibit H-like energy distributions despite the lack of Halpha absorption. Attempts to interpret the chemical evolution show the problem to be complex. Convective mixing is necessary to account for the non-DA to DA ratio as a function of temperature. The presence of helium in cool DA stars, the existence of the non-DA gap, and the peculiar DC stars are also explained in terms of convective mixing, although our understanding of how this mechanism works needs to be revised. The oldest object in our sample is about 7.9 Gyr or 9.7 Gyr old depending on whether thin or thick hydrogen layer models are used. The mean mass of our sample is 0.65 +/- 0.20 Msun.