arXiv Analytics

Sign in

arXiv:2411.05770 [math.NT]AbstractReferencesReviewsResources

Higher uniformity of arithmetic functions in short intervals II. Almost all intervals

Kaisa Matomäki, Maksym Radziwiłł, Xuancheng Shao, Terence Tao, Joni Teräväinen

Published 2024-11-08Version 1

We study higher uniformity properties of the von Mangoldt function $\Lambda$, the M\"obius function $\mu$, and the divisor functions $d_k$ on short intervals $(x,x+H]$ for almost all $x \in [X, 2X]$. Let $\Lambda^\sharp$ and $d_k^\sharp$ be suitable approximants of $\Lambda$ and $d_k$, $G/\Gamma$ a filtered nilmanifold, and $F\colon G/\Gamma \to \mathbb{C}$ a Lipschitz function. Then our results imply for instance that when $X^{1/3+\varepsilon} \leq H \leq X$ we have, for almost all $x \in [X, 2X]$, \[ \sup_{g \in \text{Poly}(\mathbb{Z} \to G)} \left| \sum_{x < n \leq x+H} (\Lambda(n)-\Lambda^\sharp(n)) \overline{F}(g(n)\Gamma) \right| \ll H\log^{-A} X \] for any fixed $A>0$, and that when $X^{\varepsilon} \leq H \leq X$ we have, for almost all $x \in [X, 2X]$, \[ \sup_{g \in \text{Poly}(\mathbb{Z} \to G)} \left| \sum_{x < n \leq x+H} (d_k(n)-d_k^\sharp(n)) \overline{F}(g(n)\Gamma) \right| = o(H \log^{k-1} X). \] As a consequence, we show that the short interval Gowers norms $\|\Lambda-\Lambda^\sharp\|_{U^s(X,X+H]}$ and $\|d_k-d_k^\sharp\|_{U^s(X,X+H]}$ are also asymptotically small for any fixed $s$ in the same ranges of $H$. This in turn allows us to establish the Hardy-Littlewood conjecture and the divisor correlation conjecture with a short average over one variable. Our main new ingredients are type $II$ estimates obtained by developing a "contagion lemma" for nilsequences and then using this to "scale up" an approximate functional equation for the nilsequence to a larger scale. This extends an approach developed by Walsh for Fourier uniformity.

Related articles: Most relevant | Search more
arXiv:0708.3557 [math.NT] (Published 2007-08-27, updated 2009-10-10)
On certain arithmetic functions involving exponential divisors, II
arXiv:1204.1146 [math.NT] (Published 2012-04-05)
On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions
arXiv:1009.6121 [math.NT] (Published 2010-09-29, updated 2011-05-30)
On the symmetry of primes