arXiv:2410.18812 [hep-th]AbstractReferencesReviewsResources
From $SU(2)$ holonomies to holographic duality via tensor networks
Grzegorz Czelusta, Jakub Mielczarek
Published 2024-10-24Version 1
Tensor networks provide a powerful tool for studying many-body quantum systems, particularly making quantum simulations more efficient. In this article, we construct a tensor network representation of the spin network states, which correspond to $SU(2)$ gauge-invariant discrete field theories. Importantly, the spin network states play a central role in the Loop Quantum Gravity (LQG) approach to the Planck scale physics. Our focus is on the Ising-type spin networks, which provide a basic model of quantum space in LQG. It is shown that the tensor network approach improves the previously introduced methods of constructing quantum circuits for the Ising spin networks by reducing the number of qubits involved. It is also shown that the tensor network approach is convenient for implementing holographic states involving the bulk-boundary conjecture, which contributes to establishing a link between LQG and holographic duality.