arXiv Analytics

Sign in

arXiv:2408.14401 [math.NT]AbstractReferencesReviewsResources

On determinants involving $(\frac{j^2-k^2}p)$ and $(\frac{jk}p)$

Deyi Chen, Zhi-Wei Sun

Published 2024-08-26Version 1

Let $p$ be an odd prime and let $(\frac{\cdot}p)$ be the Legendre symbol. In this paper, we study the determinant $$\det\left[\left(\frac{j^2-k^2}p\right)+\left(\frac{jk}p\right)w\right]_{\delta\le j,k\le (p-1)/2}$$ with $\delta\in\{0,1\}$. For example, we prove that the determinant does not depend on $w$ if $p\equiv3\pmod4$ and $\delta=0$.

Comments: 7 pages
Categories: math.NT
Subjects: 11A15, 11C20, 15A15
Related articles: Most relevant | Search more
arXiv:2210.14741 [math.NT] (Published 2022-10-26)
Legendre symbols related to certain determinants
arXiv:1901.04837 [math.NT] (Published 2019-01-15)
On some determinants involving the tangent function
arXiv:1904.06055 [math.NT] (Published 2019-04-12)
On some determinants involving cyclotomic units