arXiv Analytics

Sign in

arXiv:2406.19286 [astro-ph.HE]AbstractReferencesReviewsResources

Mass composition of ultra-high energy cosmic rays from distribution of their arrival directions with the Telescope Array

Telescope Array Collaboration, R. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Y. Arai, R. Arimura, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, I. Buckland, B. G. Cheon, M. Chikawa, T. Fujii, K. Fujisue, K. Fujita, R. Fujiwara, M. Fukushima, G. Furlich, N. Globus, R. Gonzalez, W. Hanlon, N. Hayashida, H. He, R. Hibi, K. Hibino, R. Higuchi, K. Honda, D. Ikeda, N. Inoue, T. Ishii, H. Ito, D. Ivanov, A. Iwasaki, H. M. Jeong, S. Jeong, C. C. H. Jui, K. Kadota, F. Kakimoto, O. Kalashev, K. Kasahara, S. Kasami, S. Kawakami, K. Kawata, I. Kharuk, E. Kido, H. B. Kim, J. H. Kim, J. H. Kim, S. W. Kim, Y. Kimura, I. Komae, V. Kuzmin, M. Kuznetsov, Y. J. Kwon, K. H. Lee, B. Lubsandorzhiev, J. P. Lundquist, H. Matsumiya, T. Matsuyama, J. N. Matthews, R. Mayta, K. Mizuno, M. Murakami, I. Myers, K. H. Lee, S. Nagataki, K. Nakai, T. Nakamura, E. Nishio, T. Nonaka, H. Oda, S. Ogio, M. Onishi, H. Ohoka, N. Okazaki, Y. Oku, T. Okuda, Y. Omura, M. Ono, A. Oshima, H. Oshima, S. Ozawa, I. H. Park, K. Y. Park, M. Potts, M. S. Pshirkov, J. Remington, D. C. Rodriguez, C. Rott, G. I. Rubtsov, D. Ryu, H. Sagawa, R. Saito, N. Sakaki, T. Sako, N. Sakurai, D. Sato, K. Sato, S. Sato, K. Sekino, P. D. Shah, N. Shibata, T. Shibata, J. Shikita, H. Shimodaira, B. K. Shin, H. S. Shin, D. Shinto, J. D. Smith, P. Sokolsky, B. T. Stokes, T. A. Stroman, Y. Takagi, K. Takahashi, M. Takamura, M. Takeda, R. Takeishi, A. Taketa, M. Takita, Y. Tameda, K. Tanaka, M. Tanaka, Y. Tanoue, S. B. Thomas, G. B. Thomson, P. Tinyakov, I. Tkachev, H. Tokuno, T. Tomida, S. Troitsky, R. Tsuda, Y. Tsunesada, S. Udo, F. Urban, D. Warren, T. Wong, K. Yamazaki, K. Yashiro, F. Yoshida, Y. Zhezher, Z. Zundel

Published 2024-06-27Version 1

We use a new method to estimate the injected mass composition of ultrahigh cosmic rays (UHECRs) at energies higher than 10 EeV. The method is based on comparison of the energy-dependent distribution of cosmic ray arrival directions as measured by the Telescope Array experiment (TA) with that calculated in a given putative model of UHECR under the assumption that sources trace the large-scale structure (LSS) of the Universe. As we report in the companion letter, the TA data show large deflections with respect to the LSS which can be explained, assuming small extra-galactic magnetic fields (EGMF), by an intermediate composition changing to a heavy one (iron) in the highest energy bin. Here we show that these results are robust to uncertainties in UHECR injection spectra, the energy scale of the experiment and galactic magnetic fields (GMF). The assumption of weak EGMF, however, strongly affects this interpretation at all but the highest energies E > 100 EeV, where the remarkable isotropy of the data implies a heavy injected composition even in the case of strong EGMF. This result also holds if UHECR sources are as rare as $2 \times 10^{-5}$ Mpc$^{-3}$, that is the conservative lower limit for the source number density.

Comments: 18 pages, 11 figures, accepted for publication in PRD
Categories: astro-ph.HE
Related articles: Most relevant | Search more
arXiv:1503.06961 [astro-ph.HE] (Published 2015-03-24)
Recent Results from Telescope Array
arXiv:1908.01508 [astro-ph.HE] (Published 2019-08-05)
Mass composition of cosmic rays above 0.1 EeV by the Yakutsk array data
arXiv:1009.3012 [astro-ph.HE] (Published 2010-09-15)
Revisiting the Westerlund 2 Field with the H.E.S.S. Telescope Array