arXiv Analytics

Sign in

arXiv:2406.18968 [math.NT]AbstractReferencesReviewsResources

Integral Representation for Riemann-Siegel $Z(t)$ function

Juan Arias de Reyna

Published 2024-06-27Version 1

We apply Poisson formula for a strip to give a representation of $Z(t)$ by means of an integral. \[F(t)=\int_{-\infty}^\infty \frac{h(x)\zeta(4+ix)}{7\cosh\pi\frac{x-t}{7}}\,dx, \qquad Z(t)=\frac{\Re F(t)}{(\frac14+t^2)^{\frac12}(\frac{25}{4}+t^2)^{\frac12}}.\] After that we get the estimate \[Z(t)=\Bigl(\frac{t}{2\pi}\Bigr)^{\frac74}\Re\bigl\{e^{i\vartheta(t)}H(t)\bigr\}+O(t^{-3/4}),\] with \[H(t)=\int_{-\infty}^\infty\Bigl(\frac{t}{2\pi}\Bigr)^{ix/2}\frac{\zeta(4+it+ix)}{7\cosh(\pi x/7)}\,dx=\Bigl(\frac{t}{2\pi}\Bigr)^{-\frac74}\sum_{n=1}^\infty \frac{1}{n^{\frac12+it}}\frac{2}{1+(\frac{t}{2\pi n^2})^{-7/2}}.\] We explain how the study of this function can lead to information about the zeros of the zeta function on the critical line.

Comments: 17 pages 1 figure
Categories: math.NT
Subjects: 11M06, 30D99
Related articles: Most relevant | Search more
arXiv:2407.01028 [math.NT] (Published 2024-07-01)
An Integral representation of $\mathop{\mathcal R}(s)$ due to Gabcke
arXiv:1207.4336 [math.NT] (Published 2012-07-18)
On the zeta function on the line Re(s) = 1
arXiv:2407.02016 [math.NT] (Published 2024-07-02)
Integral Representations of Riemann auxiliary function