arXiv:2406.10775 [cs.LG]AbstractReferencesReviewsResources
A Rate-Distortion View of Uncertainty Quantification
Ifigeneia Apostolopoulou, Benjamin Eysenbach, Frank Nielsen, Artur Dubrawski
Published 2024-06-16Version 1
While powerful probabilistic models such as Gaussian Processes naturally have this property, deep neural networks often lack it. In this paper, we introduce Distance Aware Bottleneck (DAB), i.e., a new method for enriching deep neural networks with this property. Building on prior information bottleneck approaches, our method learns a codebook that stores a compressed representation of all inputs seen during training. The distance of a new example from this codebook can serve as an uncertainty estimate for the example. The resulting model is simple to train and provides deterministic uncertainty estimates by a single forward pass. Finally, our method achieves better out-of-distribution (OOD) detection and misclassification prediction than prior methods, including expensive ensemble methods, deep kernel Gaussian Processes, and approaches based on the standard information bottleneck.